
Avato Developers Guide
2020-10-30

Table of Contents
About This Document 6

Build Command Reference 7

Overview 8

The Build Command 9

Building and Deploying the Avato Core Server 14
Building Avato Core 14
Packaging Avato for Deployment 16
Deploying to a Local Server 18
Building Distributables for Deployment to a Remote Server 18
Developing Core Components 20
Configuring Online Avato Distributions 20
Customizing the Build Environment 20
About the Avato Automated Build 20

Building and Deploying Avato 22
Download the Avato Bootstrap 22
Configuring Avato Environments 23
Deploying to a Local Server 30
Building Distributables for Deployment to a Remote Server 31
Developing Packages 32
Customizing the Build Environment 32

Properties Configuration 33

Overview 34

About Property Files 36
Structure of a Properties File and Token Naming 36
Build-time Properties 39
Build-time Environments 40
Environment Properties Template 40
Deployed Package Properties 41

Configuring Environment and Package Token Properties 42
Configuring Environment Properties 42
Configuring Package Properties 46

Creating Package Properties Files 48

Interface Developer Guide 52

Overview 53

2

Table of Contents • 

System Configuration 56
The <pkg:Package/> Element 57
The <pkg:Sequence/> Element 60
The <pkg:Component/> Element 64
The <pkg:Platform/> Element 67
The <int:ServerConfig/> Element 71
The <int:Security/> Element 82
The <int:Page/> Element 85
The <int:ErrorPage/> Element 87
The <int:Component/> Element 88
The <int:Interfaces/> Element 93
The <int:Schedules/> Element 96

Core Avato Component Configuration 100
The ComponentType Base Type 101
AuthChallenge 108
Catalog 113
Database 116
Dispatcher 130
FileReader 143
FileWriter 146
Forwarder 150
Logger 157
Login 164
LoginAuthority 172
Mailer 175
Message 180
ParamReader 184
ParamWriter 188
QueueWriter 191
Recorder 198
Redirect 203
Resolver 205
Sequencer 207
Timer 231
Transformer 234
Validator 239

Advanced Development Topics 242

Writing SOAP Service Tests 243
Test Flow Overview 243
Demonstration: WSDL GetOperationTemplate Test 251

Packaging An Interface 260
Demonstration: Packaging the WSDL Automated Tests 260

3

Table of Contents • 

Creating Mock Services 264
Demonstration: Mocking the T24 Login Service 264

Appendices 267

Build Process Details 268

XML Catalogs 269
Overview 269
Resolving URIs for Includes, Imports, and XPath References 269
Resolving Schemas 271

Document Conventions 273
Data Types 273
Schema Models 274
XML Models 275
Keycap References 275
Typography 277
User Actions 278
Tips and Admonitions 279

4

David Priest
Elided…

Part I. Build Command Reference

7

Overview

Avato comprises an executable providing a set of core components used in
assembling transformation circuits and a set of specialized packages providing
interfaces to external servers and clients. These two functionalities — internal
Avato components and external interfaces — are distinctly separated. Every
Avato installation is likely to use the same set of core components but a set of
significantly different interfaces. In fact, the only time an Avato installation might
use a non-standard set of core components is when an external server or client
requires the development of specialized Java code.

This separation of concerns allows Avato to maintain a stable core yet at the
same time provide dynamic functionality that can be changed on-the-fly without
requiring recompilation or server reboot. This significantly eases development of
new external interfaces and data transformations while radically reducing server
downtime costs and recompilation times.

In support of this two-part design, Avato includes a flexible, powerful build
system for configuring, compiling, and deploying instances of the server
application for local development and for deployment to QA and production
servers.

This reference and the process of using the Avato build system is divided into
three parts:

The Build Command
The reference manpage for the Ant build command. Please familiarize yourself
with the build command before proceeding.

Building and Deploying the Avato Core Server
Building, packing and distributing the Avato core itself, which may also have
packages included as part of the core distribution. This is the process used when
first standing-up an Avato system.

Building and Deploying Avato
Building, packaging, and deploying of custom Avato packages that leverage
a specific pre-compiled version of the Avato core. This is the process most
developers will be using as they configure stand-alone clusters of Avato
instances for your own business units and environments.

Please see Appendix C, Document Conventions for useful information regarding
the typography used in this document.

8

1 The Build Command

Name
ant - a Java based make tool.

Synopsis
ant task… [-Dproperty="value"]…

Description
ant is a tool to build software. It uses the file build.xml to define tasks and
properties for the build process. For Avato, it is used to update, validate, build,
and deploy Avato instances.

Tasks
In normal usage it is common to specify multiple tasks to be executed in
sequence.

Tasks marked (core) are available only to core developers; tasks marked (system)
are available only to system developers.

build-core (core)
Builds the core Avato web application runtime. Re-compiles core
components from source code and creates new bare-bones .ear and .war
prototypes. Once compiled, Avato core never needs to be recompiled except
when the core source code is updated.

build-core (system)
Checks that the core Avato runtime is available. If it is missing, calls the
system update task and prepares the filesystem.

build
Calls the build-core (system) and build-packages tasks, then generates and
validates the server configuration files. Typically used in combination with the
deploy or pac task.

build-packages (system)
Build the packages that have been specified in the environment’s
packages.txt file. Performs dependency resolution and de-tokenization
of properties, assembles build resources, and then copies files to the
deployment directory.

9

The Build Command • 

mkdocs
Builds documentation (PDF and HTML) from Asciidoctor source.

docs
Include documentation in the deployment.

deploy
Merges the core prototypes with packages, creating a full Avato application,
and deploys Avato to a local server instance as a .war file.

deploy-tmp
Deploys an Avato instance to the local server as an uncompressed directory
folder enabling file updates without restarting the server. See also the
deploy-unzipped task below.

pac (core)
Packages the Avato core prototypes, Avato packages, and supporting
configuration and build files into a single directory, and a set of zipped files,
any of which can then be copied to a server for deployment.

pac (system)
Calls the zip task.

zip (system)
Zips local packages, properties and build.xml for distribution. The zip file
can be extracted on a remote machine, where the ant build task will fetch
the Avato core from the online distribution center and build an installer for
execution on that remote machine. The output file is produced in the root
directory and is named mobius.install.zip.

update (system)
Downloads the latest Avato bootstrap from the distribution servers
configured in properties/env-name/properties.xml and, if the download
is successful, calls the update-all task.

update-all (system)
Downloads the latest Avato core, packages, and properties from the
distribution servers configured in properties/env-name/properties.xml
and, if the download is successful, replaces the existing core, packages, and
properties folders.

update-and-deploy (system)
Called by the server to perform the update, build and deploy tasks. This
updates the bootstrap and then executes a fresh build and deploy.

validate-web (system)
Validates the deployment file web.xml. This is an “expensive” operation,
taking tens of seconds to run to completion, as it fetches JBoss schemas from
the web.

10

David Priest
Elided…

Part II. Properties Configuration

33

Overview

Development, test, and production environments usually do not share the same
resources. Additionally, correct configuration of resources may require values to
conform to certain specifications: for example, a URL that is correctly formed, an
integer within a certain range, or the selection of one of a limited number of valid
values.

Avato provides an elegant solution to these challenges:

• Property files that provide environment-specific and package-specific
settings;

• A build system that is aware of environments and packages;

• A tokenization system that allows you to use generic property names in
place of their values;

• Schematization of properties, so that properties and configurations can be
validated prior to building the system.

Development and configuration of the deployment environment and packages
takes place in the root/properties/ folder. These are illustrated in the next
two diagrams:

Avato Properties Directory Structure

Avato

└── properties

 ├── local

 │ ├── Analytics.Google.properties.xml

 │ ├── Development.JIRA.properties.xml

 │ ├── Path.To.Package.Properties.xml

 │ └── properties.xml

 └── production

 ├── Analytics.Google.properties.xml

 ├── Development.JIRA.properties.xml

 ├── Path.To.Package.Properties.xml

 └── properties.xml

Properties configuration root directory.

Environment folders: “local” for the developer running on a local
workstation and “production” for a deployment to a server cluster. When
building Avato you may use the env-name property to create and populate
environment folders.

Property files specific to each package, each configured for the local
developer environment.

34

Overview • 

Global properties for the developer environment.

Property files specific to each package, each configured for the production
environment.

Global properties for the production environment.

Avato Packages Directory Structure

Avato

└── packages

 ├── Analytics

 │ └── Google

 │ ├── package.xml

 │ ├── properties.xml

 │ ├── properties.xsd

 │ └── subfolders

 └── Development

 └── JIRA

 ├── package.xml

 ├── properties.xml

 ├── properties.xsd

 └── subfolders

Packages root directory.

Package groups: packages may be arbitrarily grouped; not shown here are
other packages providing analytics or development support.

Package folders: each package is self-contained within a folder.

Package Configuration: each package must have a configuration file that
defines the interfaces, components, connections, data sources, and other
facets required by the build system to install a package on the server.

Package Property Template: each package may use tokens in its
configuration file; this property template provides definitions for each
token. This file is copied to root/properties/ environment folders the
first time the package is added to an environment, as shown in the Avato
Properties Directory Structure example above.

Package Schema: an optional schema will be used to validate the
package‘s root/properties/ property files.

Package functionality is usually distributed among various folders (e.g.
catalog,xsd,src, xslt, etc.)

The following chapters examine the Properties system in detail.

35

4 About Property Files

Property files provide the mapping through which uniquely-identified tokens, in
the form @token.name@, are replaced by a value during the build process. The
value selected for the token is selected by considering the target environment
and the file that is being processed.

In most cases the processed file is a package configuration file found somewhere
in the root/properties/ directory tree. During the build process tokens in a
package’s own properties.xml file are preferred to those in the environment’s
properties.xml file.

There are other build configuration files involved in building and deploying Avato
and some of these also use token replacement. In those cases, the build system
looks only in the appropriate environment properties.xml file.

The structure of a properties file also defines the name of a token. To better
understand this, let us examine a properties file in more detail.

4.1. Structure of a Properties File and Token
Naming
Structure of a Properties File
Avato XML Properties files have an arbitrary root wrapper element with
descendent simple elements containing either simple elements (containing only
simple elements) or text content:

<root-element

 xmlns="namespace_uri">

 <!-- Content: (element)* -->

</root-element>

<element>

 <!-- Content: (element | string)? -->

</element>

In practice, a Properties file might look something like this:

<properties

 xmlns="http://worldwest.local/analytics/Google/properties/1.0">

 <google>

 <analytics>

 <key>0df49fc6-c4b3-4a5d-836d-138a31dc524b</key>

 </analytics>

36

About Property Files • Structure of a Properties File and Token Naming

 </google>

</properties>

This property file generates a token named @google.analytics.key@. The
convention used to generate token names is described below:
Token Naming
Tokens are wrapped with @ (at) signs and their name is formed by dot-
separating the element path to the token value after discarding the
arbitrary root wrapper element. In other words, token names look like
@path.to.token.value@.
This rule can be illustrated using the following simple example containing three
tokens:

<properties

 xmlns="http://my.org/package/path/properties/1.0">

 <PKGNAME>

 <A>1

 2

 <C>

 <D>

 <E>3</E>

 </D>

 </C>

 </PKGNAME>

</Package>

Applying the simple dot-path rule, we get these name-value pairs:

Token Name Value

@PKGNAME.A@ 1

@PKGNAME.B@ 2

@PKGNAME.C.D.E@ 3

Note

The tokens defined in a package’s properties.xml file are used only
for that package. Other packages can not access those tokens.
When creating a package properties file there is no need to worry
about name collisions, with one notable exception: Packages can
redefine token values found in the environment’s properties.xml
file. The redefined value is applicable to that package only: no other
package will be affected, nor will the private system files accessed
by the build process. However, such a situation has high potential for
creating confusion and should be avoided.

37

About Property Files • Structure of a Properties File and Token Naming

Important

It is best practice to create token names that use the package name
as the first name element, thus avoiding any token name confusion.

Token Replacement Example
The addition of highlighting to an example can help illustrate the token
replacement process. Given this properties file:

<properties

 xmlns="http://worldwest.local/analytics/Google/properties/1.0">

 <google>

 <analytics>

 <key>0df49fc6-c4b3-4a5d-836d-138a31dc524b</key>

 </analytics>

 </google>

</properties>

And this package file:

<Package

 xmlns="http://worldwest.local/package/1.0"

 xmlns:int="http://worldwest.local/interface/1.0" >

 <Name>Google Analytics</Name>

 <Description>Adds support for Google Analytics, including embedding the tag in

 each JSP page.</Description>

 <Component>

 <Resources type="web">web</Resources>

 </Component>

 <Platform>

 <int:ContextParameter name="google.analytics.key">

 @google.analytics.key@

 </int:ContextParameter>

 </Platform>

</Package>

The build system will derive this final package file:

<Package

 xmlns="http://worldwest.local/package/1.0"

 xmlns:int="http://worldwest.local/interface/1.0" >

 <Name>Google Analytics</Name>

 <Description>Adds support for Google Analytics, including embedding the tag in

 each JSP page.</Description>

 <Component>

 <Resources type="web">web</Resources>

 </Component>

 <Platform>

38

David Priest
Elided…

Part III. Interface Developer Guide

52

David Priest
Elided…

Core Avato Component Configuration • Dispatcher

8.5. Dispatcher
The Dispatcher transforms an incoming request into multiple outgoing upstream
service requests and then processes the responses to return a single response to
the downstream service caller.

The Dispatcher is useful for implementing Model-View-Controller (MVC)
patterns, for aggregating or combining data from different systems, and for
implementing conditional flow dependent on the requests and responses
incurred during the fulfillment of an individual service request.

8.5.1. Configuration Example
The following configures a component that is listening on the /po/
dispatcher service endpoint. The messages it receives are transformed by
ProcessPurchaseOrder.xsl which will, based on the message content, send
message requests to other services and process their responses to generate a
response message.

<Dispatcher

 name="purchaseorder-dispatcher"

 wsdl="/msg/po/dispatcher?wsdl"

 xformRequest="/msg/purchaseorder/xsl/ProcessPurchaseOrder.xsl" >

 <DisplayName>Purchase Order Dispatcher</DisplayName>

 <Description>Dispatches POs to the database and forwards select POs for

 further processing</Description>

 <Listening>

 <Address>/po/dispatcher</Address>

 </Listening>

</Dispatcher>

8.5.2. Type Information

8.5.2.1. Namespace

http://worldwest.local/interface/1.0
<Dispatcher/> belongs to the Interface namespace.

8.5.2.2. Type Definition
<Dispatcher/> is defined by an XSD 1.0 type named int:DispatcherType.

8.5.2.3. Class
The Dispatcher component is implemented by the
ca.worldwest.mobius.web.servlet.Dispatcher2 class.

130

Core Avato Component Configuration • Dispatcher

8.5.2.4. Inherited Components
The <Dispatcher/> element inherits elements and attributes from

• int:ComponentType.
• int:Forwarder.
• int:Transformer.

8.5.2.5. Derived Components
No component type definitions extend int:DispatcherType.

8.5.3. Simple Schema Model
<Dispatcher

【inherited from Transformer】

 【xformRequest? = server url】

 【parse-request? = boolean】

 【xformResponse? = server url】

 【parse-response? = boolean】

 【requestContextXPath? = XPathExpression】

【inherited from Forwarder】

 【upstreamServiceName? = string】

 【httpMethod? = string】

 【connectTimeout? = integer】

 【readTimeout? = integer】

 【eraseCookies? = boolean】

 【append-uri-tail? = boolean】

 【append-uri-params? = boolean】

 【append-root? = string】

 【ssl-ignore-host? = boolean】

 【allow-direct? = boolean】

【inherited from ComponentType】

 【name = string】

 【class? = string】

 【loginTokenXPath? = string】

 【contentType? = string】

 【faultHttpResponseCode? = string】

 【xformFault? = server url】

 【wsdl? = server url】

 【xformWSDL? = server url】

 【urlErrorOutputPath? = server url】

 【log-level? = "TRACE" | "DEBUG" | "INFO" | "WARN" | "ERROR" | "FATAL"】

 【recordingDisabled? = boolean】

 【writeToSequence? = string】

 【writeToSequenceName? = string】

 【xformRecordTitleRequest? = string】

131

Core Avato Component Configuration • Dispatcher

 【xformRecordTitleResponse? = string】

 >

 <!-- Content: ()

【inherited from Transformer】

 (【Expect?】)

【inherited from Forwarder】

 (【Headers?】 【Forwarding?】)

【inherited from ComponentType】

 (【DisplayName?】 【Description?】 【Listening】 【Parameters?】)

 -->

</Dispatcher>

<Headers

 mode = "passthrough", string

 for? = tokens >

 <!-- Content: (Add | Delete | Modify)* -->

</Headers>

8.5.4. XML Model
<Dispatcher

 name="Component Name"

 【inherited attributes from Transformer】

 【inherited attributes from Forwarder】

 【inherited attributes from ComponentType】 >

 【inherited elements from Transformer】

 【inherited elements from Forwarder】

 <Headers for="tokens"/>

 【inherited elements from ComponentType】

</Dispatcher>

name

The name of the component. It must be unique within the system.

Headers, for

The <Headers/> element inherited from Forwarder is extended with the
attribute for, used to identify groups of header modifications.

If for is not set, the name attribute of a dispatched <esb:XmlRequest/>
will be used to match against the name attribute of <Add/>, <Modify/>,
and <Delete/> header modifications.

Otherwise, for may contain a space-separated list of tokens, in which
case the header-group attribute of dispatched <esb:XmlRequest/
>'s will be used to match <Add/>, <Modify/>, and <Delete/> header
modifications.

132

Core Avato Component Configuration • Dispatcher

This is particularly useful when a Dispatcher is collating information from
a number of services that require the same header modification, but where
the name of each <esb:XmlRequest> needs to be unique so that the
various responses can be used as data sources.

Otherwise, Dispatcher configuration is identical to Transformer
configuration.

8.5.5. Using Dispatcher’s esb:Service Elements
The Dispatcher extends Transformer by defining a set of uniquely namespaced
elements that may be emitted by a transformation. When Dispatcher detects one
of these elements, it performs a request to a service endpoint and then feeds
that endpoint’s response back into the transformation. A record of all requests
and responses is maintained, allowing the transformation to return a response
comprised of data obtained from multiple sources.

These Dispatcher-specific elements are in the http://worldwest.local/esb
namespace. The recommended namespace prefix is esb. See the XML models
Dispatcher Services Simple Schema Model and Dispatcher Services XML Model,
below, for markup details.

8.5.5.1. Dispatch esb:Services Simple Schema Model

<Services

 xmlns="http://worldwest.local/esb">

 <!-- Content: (XmlRequest? HttpRequest?) -->

</Services>

<XmlRequest

 xmlns="http://worldwest.local/esb"

 uri = url

 name? = string

 faultaction? = "terminate" | "ignore" | "dispatch"

 response-as? = "content" | "name"

 content-type? = "xml/text" | string

 http-method? = "GET" | "HEAD" | "POST" | "PUT" | "DELETE" | "CONNECT" |

 "OPTIONS" | "TRACE" | "PATCH"

 context? = string

 header-group? = string

 >

 <!-- Content: (any) -->

</XmlRequest>

<HttpRequest

 xmlns="http://worldwest.local/esb"

 URL = url

133

Core Avato Component Configuration • Dispatcher

 name = string

 faultaction? = "terminate" | "ignore" | "dispatch"

 response-as? = "name" | "content"

 content-type? = "xml/text" | string

 http-method? = "GET" | "HEAD" | "POST" | "PUT" | "DELETE" | "CONNECT" |

 "OPTIONS" | "TRACE" | "PATCH"

 context? = string

 header-group? = string

 >

 <!-- Content: (HttpHeaders? HttpBody) -->

</HttpRequest>

<HttpHeaders

 xmlns="http://worldwest.local/esb"

 >

 <!-- Content: (HttpHeader*) -->

</HttpRequest>

<HttpHeader

 xmlns="http://worldwest.local/esb"

 name = string

 >

 <!-- Content: (text) -->

</HttpRequest>

<HttpBody

 xmlns="http://worldwest.local/esb"

 >

 <!-- Content: (text) -->

</HttpRequest>

8.5.5.2. Dispatcher esb:Services XML Model

<Services

 xmlns="http://worldwest.local/esb" >

 <XmlRequest

 uri="Request Endpoint"

 name="Response Name"

 faultaction="terminate|ignore|dispatch"

 response-as="name|content"

 content-type="text/xml|other content-type"

 http-method="GET|HEAD|POST|PUT|DELETE|CONNECT|OPTIONS|TRACE|PATCH"

 context="???"

 header-group="???"

 >

 request message

134

Core Avato Component Configuration • Dispatcher

 </XmlRequest>

 ⋮

 <HttpRequest

 uri="Request Endpoint"

 name="Response Name"

 faultaction="terminate|ignore|dispatch"

 response-as="name|content"

 content-type="text/xml|other content-type"

 http-method="GET|HEAD|POST|PUT|DELETE|CONNECT|OPTIONS|TRACE|PATCH"

 context="???"

 header-group="???"

 >

 <HttpHeaders>

 <HttpHeader

 name="header name">

 header value

 </HttpHeader>

 ⋮

 </HttpHeaders>

 <HttpBody>

 body content

 </HttpBody>

 </XmlRequest>

 ⋮

</Services>

uri

A URL identifying the endpoint destination for this request.

name

A name for the response content, allowing easy template matching when
processing the response. See response-as, below, for further details.

faultaction

Identifies the action taken if the endpoint returns a fault. terminate
will immediately pass the fault upstream, ending all processing of the
transformation. ignore will continue processing the transformation; the
fault will be available in the dispatch results document. dispatch is not
currently supported.

response-as

By default, the endpoint response will be fed back into the transformation
as the default context; it can be identified using a match against its
elements, i.e. /*:Envelope/*:Body/response root element name.
Set to name, the endpoint response will be returned in a document named

135

Core Avato Component Configuration • Dispatcher

after the request; it can be matched as /*[name()='name'] or retrieved
as doc('name'). It is normally preferable to use named responses.

content-type

Assigns a content type to the request. The default content-type is text/
xml.

http-method

Configures the HTTP method for the request. The default method is GET.

context

Where name is used to join a dispatched request and response in the
DispatchResult document, context is used to pass information to the
transformation for use during response matching and transformation.
Usually, this information will be computed during the dispatch request
phase, rather than information contained in the request itself (which can
always be accessed using doc('name').

header-group

Identifies a header action (Add, Delete, Modify) defined in the Dispatcher
component definition. See the Interface Developer Guide section on
Dispatcher for details.

<esb:HttpHeader>

Defines an HTTP request header with a given name and value.

<esb:HttpBody>

Defines the HTTP request body. Note that the content of the
<esb:HttpBody/> element is processed as XSL and subject to its rules for
whitespace handling, entity encoding, and disallowed characters. Use a
CDATA section to pass raw text that would otherwise be modified by the
XSL processor.

request message

The child content of the <esb:XmlRequest> extension is comprised of
arbitrary XML content generated through XSL instructions or hard-coded
text. Generally, calls to SOAP wrapper or other XML message construction
functions will be performed, passing various information extracted from
the current context or through other calculations. The end result will be an
XML message suitable for consumption by the service endpoint.

8.5.6. Processing of Dispatcher’s esb:Service Elements
The esb:Service elements are used in XSL and XQuery transformations to
perform asynchronous service requests.

136

Core Avato Component Configuration • Dispatcher

In an typical transformation, handled by the Transformer component, the result
document is comprised of information gleaned exclusively from the document(s)
passed into the transformation, and is built on-the-fly as the source document is
consumed. There is little support in standard XSLT or XQuery to query external
sources: the doc() function has limited access to file and http resources, and
that access is synchronous: processing halts until the resource is obtained.
These limitations are often acceptable: a lot of data transformation work simply
converts a message containing one data structure to a message containing
a different but parallel data structure, enabling communication between
proprietary software products.

For more complex scenarios, where a response must consolidate information
from multiple sources, the Dispatcher component provides support for
asynchronous, non-blocking querying of endpoints. In this processing model, the
transformation is run multiple times: once for the source document(s), again for
each response to a service request, and a final run against the collated request-
response collection.

On the initial run, template matches are performed against the source document
(the initial request message), just like a normal transformation. Unlike a normal
transformation, though, the final result document is not built on-the-fly as
the source document is consumed. Rather, an intermediate <esb:Services/
> document is generated, comprising a set of requests to collect additional
documents and data. Only when these requests have been fulfilled (or timed out)
is the final result document composed, using information gleaned from the set of
request-response documents.

When a transformation emits <esb:Services/> documents, Dispatcher:

A. Sends out the requests and waits for a response or time-out;

B. Stashes the request-response pair in a collection document; and

C. Sends the responses back into the transformation. A response may be
matched by a template in order to extract information for a subsequent
request; if it is not matched, the transformation returns nothing.

This intermediate stage continues as long as the Dispatcher receives
<esb:Services/> documents or responses to requests (and does not receive a
fault that requires termination). When all requests have been fulfilled or timed-
out, it can procede to the final stage of processing.

In the final stage the collection document, with a root node named
DispatchResult, is sent into the transformation. There it will be matched by a
template, which will in turn generate the final result document by composing an
XML document using information sourced from the collection of requests and
responses.

This final result document is the response to the initial request, and is returned
upstream by the Dispatcher.

137

Core Avato Component Configuration • Dispatcher

8.5.7. Example XSL Use of Dispatcher’s esb:Service
Elements
The following (simplified) XML and XSLT presents a usage pattern for
Dispatcher. Unnecessary detail has been eliminated: in real-world use there
would be need for namespace definitions, fault handling, and so on.
In this example, the Dispatcher receives a SOAP message:

<s12:Envelope>

 <s12:Body>

 <GetSalesReport>

 <Employee id="1000"/>

 <Employee id="1001"/>

 <Employee id="1002"/>

 </GetSalesReport>

 </s12:Body>

</s12:Envelope>

From this, a report listing employees by name and sales is to be generated.
The initiating request message lacks the required information: we must use
Dispatcher to query service endpoints that can return employee names and sales
information. In our scenario these services are provided by separate endpoints;
bizarrely, but conveniently for our demonstration, the sales information is
indexed by employee name, not their ID!
First Stage: handle the initiating request
To begin, a template must match our initiating request. It will generate a set of
requests for employee names, so that we may subsequently query the sales
information service. The names-providing service communicates using SOAP
messaging.

<xsl:template match="/s12:Envelope/s12:Body/GetSalesReport">

 <esb:Services>

 <xsl:for-each select="Employee">

 <esb:XmlRequest name="GetEmployeeName-{@id}" uri="http://names-endpoint">

 <s12:Envelope>

 <s12:Body>

 <getNameFromId><ID>{@id}</ID></getNameFromId>

 </s12:Body>

 </s12:Envelope>

 </esb:XmlRequest>

 </xsl:for-each>

 </esb:Services>

</xsl:template>

Match the initiating request. For safety, a less-specific template match
might capture unrecognized SOAP requests and return a fault indicating
that this service can not handle the request.

138

Core Avato Component Configuration • Dispatcher

Iterate through employees, creating a request for each one.

The above template consumes the source document, emitting the following XML
content on completion:

<esb:Services>

 <esb:XmlRequest name="GetEmployeeName-1000" uri="http://names-endpoint">

 <s12:Envelope>

 <s12:Body>

 <getNameFromId><ID>1000</ID></getNameFromId>

 </s12:Body>

 </s12:Envelope>

 </esb:XmlRequest>

 <esb:XmlRequest name="GetEmployeeName-1001" uri="http://names-endpoint">

 <s12:Envelope>

 <s12:Body>

 <getNameFromId><ID>1001</ID></getNameFromId>

 </s12:Body>

 </s12:Envelope>

 </esb:XmlRequest>

 <esb:XmlRequest name="GetEmployeeName-1002" uri="http://names-endpoint">

 <s12:Envelope>

 <s12:Body>

 <getNameFromId><ID>1002</ID></getNameFromId>

 </s12:Body>

 </s12:Envelope>

 </esb:XmlRequest>

</esb:Services>

Intermediate Stages: send out requests, transform responses
The Dispatcher takes the <esb:Services/> result document above and
issues three separate SOAP requests to http://names-endpoint. The names
endpoint returns responses in the form:

<s12:Envelope>

 <s12:Body>

 <NameFromId id="id">

 <givenname>first name</givenname>

 <surname>last name</surname>

 </NameFromId>

 </s12:Body>

</s12:Envelope>

The Dispatcher sends those responses back into the transform as they are
received, where they will be matched by the following template. This time, we
have to emit specially-crafted HTTP requests to the endpoint server:

<xsl:template match="/s12:Envelope/s12:Body/NameFromId">

139

Core Avato Component Configuration • Dispatcher

 <esb:Services>

 <esb:HttpRequest name="GetEmployeeSales-{@id}" uri="http://sales-endpoint">

 <esb:HttpHeaders>

 <esb:HttpHeader

 name="PROP-SERVICE">GetEmployeeSales</esb:HttpHeader>

 <esb:HttpHeader

 name="Content-type">text/plain; charset=UTF-8</esb:HttpHeader>

 <esb:HttpHeader

 name="Content-length">{string-length(surname||','||givenname)}</

esb:HttpHeader>

 </esb:HttpHeaders>

 <esb:HttpBody>{surname},{givenname}</esb:HttpBody>

 </esb:XmlRequest>

 </esb:Services>

</xsl:template>

The above template emits a <esb:Services/> document that Dispatcher will
convert to an HTTP request:

GET http://sales-endpoint HTTP/1.1

PROP-SERVICE: GetEmployeeSales

Content-type: text/plain; charset=UTF-8

Content-length: 28

surname,givenname

The request is sent to the sales endpoint, which returns an XML document:

<EmployeeSales>

 <Employee>surname,givenname</Employee>

 <Sales>dollar figure</Sales>

</EmployeeSales>

The sales endpoint response documents are themselves fed back into the
transformation. Because we have no need to emit more <esb:Services>
requests, there is no need to match against these responses. The Dispatcher,
having emptied its <esb:Services> queue, can now send the request-response
collection into the transformation for the final processing stage.

Final Stage: process the DispatchResult document
The initiating request, the various <esb:XmlRequest> and <esb:HttpRequest>
requests, and their responses are collated into a single document with a root
node named DispatchResult. This node must be matched by a template that
will emit a response message for the upstream service:

<xsl:template match="DispatchResult">

 <s12:Envelope>

 <s12:Body>

140

Core Avato Component Configuration • Dispatcher

 <SalesByEmployee>

 <xsl:for-each select="doc('Request')//Employee">

 <Employee>

 <Name>{doc('GetEmployeeName-'||@id)//givenname}

{doc('GetEmployeeName-'||@id)//surname}</Name>

 <Sales>${doc('GetEmployeeSales-'||{@id})//Sales}</Sales>

 </Employee>

 </xsl:for-each>

 </SalesByEmployee>

 </s12:Body>

 </s12:Envelope>

</xsl:template>

The Request document contains the initiating request, where we can
iterate through the employee list.

Using the employee ID, we can re-generate the names used for issuing the
<esb:Services/> requests, using them to fetch the correct document and
“drill down” to the required data value.

Alternative First Stage: handle the initiating request
As an alternative to using an imperative for-each loop, <xsl:apply-templates/
> can be used to create a declarative pattern-matching solution to generate the
initial <esb:Services/> requests:

<xsl:template match="/s12:Envelope/s12:Body/GetSalesReport">

 <esb:Services>

 <xsl:apply-templates/>

 </esb:Services>

</xsl:template>

<xsl:template match="Employee">

 <esb:XmlRequest name="GetEmployeeName-{@id}" uri="http://names-endpoint">

 <s12:Envelope>

 <s12:Body>

 <getNameFromId><ID>{@id}</ID></getNameFromId>

 </s12:Body>

 </s12:Envelope>

 </esb:XmlRequest>

</xsl:template>

Note that <esb:Services/> wraps all the requests. A valid XML
document must have only one root node: hence, the wrapper must be
placed around the <xsl:apply-templates/> instruction.

Alternative Final Stage: process the DispatchResult document
As with the alternative first stage, <xsl:apply-templates/> provides a
pattern-matching solution for handling the DispatchResults. Note the

141

Core Avato Component Configuration • Dispatcher

use of XSL mode to prevent matching against the templates that generate
<esb:Services> requests.

With this solution, employee names are not guaranteed to be listed in the same
order as the initiating request.

<xsl:template match="DispatchResult">

 <s12:Envelope>

 <s12:Body>

 <SalesByEmployee>

 <xsl:apply-templates

 select="document(//Response/Document[starts-

with(@name,'GetEmployeeName-')]/@name)"

 mode="dispatchresult">

 </SalesByEmployee>

 </s12:Body>

 </s12:Envelope>

</xsl:template>

<xsl:template match="/s12:Envelope/s12:Body/NameFromId" mode="dispatchresult">

 <Employee>

 <Name>{givenname} {surname}</Name>

 <xsl:apply-templates

 select="document(//Response/Document[starts-

with(@name,'GetEmployeeSales-'||@id)]/@name)"

 mode="#current">

 </Employee>

</xsl:template>

<xsl:template match="EmployeeSales" mode="dispatchresult">

 <Sales>${Sales}</Sales>

</xsl:template>

142

David Priest
Elided…

Core Avato Component Configuration • Logger

8.9. Logger
The Logger component logs information about the incoming request or response
HTTP message headers and body. If the message is a request, it is then
forwarded to its configured endpoint (or, if no endpoint is specified, returns the
request to the caller); if the message is a response, it is forwarded back to the
downstream service. Messages can be logged to a log file and/or to the Avato
Sequence database.

The Logger component is especially useful for reverse engineering existing
protocols, as it can be inserted into an existing communication channel between
a client and its server without unexpected side-effects. The component in its
default state passes on all information exactly as it was received to a configured
upstream server, and returns the server’s responses intact, without otherwise
having any impact on the connection.

The Logger supports modification of the logged message. This can be used
to obfuscate sensitive information, add content containing additional log
information, or to reduce the log entry to a subset of the message information.

Note

A Message can be transformed only if it is well-formed XML with
a MIME type starting with text/xml, application/soap+xml, or
application/xml.

Warning

If a Logger component fails to process the message, due to invalid
XML, inaccessible transformation, database failure, inability to write
to the system log file, or any other reason, the message content is
written in plain text as received, unmodified and the Circuit will
continue to execute as planned.

For SOAP messaging, Avato supplies a Logger transformation /xsl/auth/
MaskLogMessages.xsl that adds a variety of useful information about the
component, server, and message as a SOAP Header nodes, and provides some
basic masking matches.

The package Privacy/Logging provides a framework for developing custom
log masking functionality. Models from which to adapt your own custom
log masking can be found in the various Banking/package/xsl/logging
directories.

When logging at DEBUG level, HTTP header fields are recorded.

157

Core Avato Component Configuration • Logger

8.9.1. Configuration Example
The following configures a component that is listening on the /ui/activity/
log service endpoint. This component logs the request message before
forwarding it to a Dispatcher.

<Logger

 name="activity-logger"

 content-log-level="WARN"

 log-level="DEBUG" >

 <DisplayName>Activity Logger</DisplayName>

 <Description>Logs requests to the user activity service</Description>

 <Listening>

 <Address>/ui/activity/log</Address>

 </Listening>

 <Forwarding>

 <Address>/ui/activity/dispatcher</Address>

 </Forwarding>

</Logger>

8.9.2. Type Information

8.9.2.1. Namespace

http://worldwest.local/interface/1.0
<Logger/> belongs to the Interface namespace.

8.9.2.2. Type Definition
<Logger/> is defined by an XSD 1.0 type named int:LoggerType.

8.9.2.3. Class
The Logger component is implemented by the
ca.worldwest.mobius.web.servlet.Logger class.

8.9.2.4. Inherited Components
The <Logger/> element inherits elements and attributes from

• int:ComponentType
• int:Forwarder

8.9.2.5. Derived Components
The following type definitions extend int:LoggerType

• int:RecorderType

158

Core Avato Component Configuration • Logger

8.9.3. Simple Schema Model
<Logger

 xformRequest? = server url

 xformResponse? = server url

 content-log-level? = "TRACE" | "DEBUG" | "INFO" | "WARN" | "ERROR" | "FATAL"

【inherited from Forwarder】

 【upstreamServiceName? = string】

 【httpMethod? = string】

 【connectTimeout? = integer】

 【readTimeout? = integer】

 【eraseCookies? = boolean】

 【append-uri-tail? = boolean】

 【append-uri-params? = boolean】

 【append-root? = string】

 【ssl-ignore-host? = boolean】

 【allow-direct? = boolean】

【inherited from ComponentType】

 【name = string】

 【class? = string】

 【loginTokenXPath? = string】

 【contentType? = string】

 【faultHttpResponseCode? = string】

 【xformFault? = server url】

 【wsdl? = server url】

 【xformWSDL? = server url】

 【urlErrorOutputPath? = server url】

 【log-level? = "TRACE" | "DEBUG" | "INFO" | "WARN" | "ERROR" | "FATAL"】

 【recordingDisabled? = boolean】

 【writeToSequence? = string】

 【writeToSequenceName? = string】

 【xformRecordTitleRequest? = string】

 【xformRecordTitleResponse? = string】

 >

 <!-- Content: ()

【inherited from Forwarder】

 (【Headers?】 【Forwarding?】)

【inherited from ComponentType】

 (【DisplayName?】 【Description?】 【Listening】 【Parameters?】)

 -->

</Logger>

8.9.4. XML Model
<Logger

159

Core Avato Component Configuration • Logger

 name="Component Name"

 xformRequest="/server/path/to/transformation"

 xformResponse="/server/path/to/tranformation"

 content-log-level="TRACE|DEBUG|INFO|WARN|ERROR|FATAL"

 【inherited attributes from Forwarder】

 【inherited attributes from ComponentType】 >

 【inherited elements from Forwarder】

 【inherited elements from ComponentType】

</Logger>

name

The name of the component. It must be unique within the system.

xformRequest, xformResponse

The server path to transformation scripts to modify the logged content.
See Protecting Sensitive Information for an example of its use.

content-log-level

Configures the log priority for the message body.

This is distinguished from the component-level log level, which pertains to
log messages generated by the component itself.

For more information about logging, please consult Apache’s Logging
Services documentation.

8.9.5. Logger Output
The default configuration for server logging writes DEBUG and higher-rated
messages to both the terminal console and the application’s server.log file. A
typical example of logger output looks like this:

Typical Logger Output

09:49:08,346 INFO [ca.worldwest.esb.application.recorder.ForwardServlet]

 (default task-26) Request headers =

SOAPAction=undefined

referer=https://worldwest.ca/esb/ui/circuits

accept-language=en-US,en;q=0.9

cookie=JSESSIONID=c3G2382cv6vYoDbPbkfY-kSukiTh-P0kHVIxQO4C

origin=https://worldwest.ca:8443

content-type=*

Host=worldwest.ca

accept=*/*

user-agent=Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36

 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36

160

https://logging.apache.org/log4j/2.x/manual/
https://logging.apache.org/log4j/2.x/manual/

Core Avato Component Configuration • Logger

09:49:11,644 INFO [ca.worldwest.mobius.svn.subversion-logger.ServletBase]

 (default task-2) xformFault is https://worldwest.ca/esb/xsl/fault/

FaultResponse-1.2.xsl

09:49:12,070 INFO [ca.worldwest.mobius.svn.subversion-logger.Logger] (default

 task-2) Processing subversion-logger request from 127.0.0.1

09:49:12,074 INFO [ca.worldwest.mobius.svn.subversion-

logger.Logger.MessageContent] (default task-2) Body=

<s12Env:Envelope xmlns:s12Env="http://www.w3.org/2003/05/soap-envelope">

 <s12Env:Header>

 <Token xmlns="http://worldwest.local/auth">8daa1019-4c56-4c74-85d9-

c3206f96e2c2</Token>

 </s12Env:Header>

 <s12Env:Body>

 <History xmlns="http://worldwest.local/svn">

 <RepoURL xmlns="">http://worldwest.ca/repo/wonka</RepoURL>

 <From xmlns="">1</From>

 <To xmlns="">-1</To>

 <Username xmlns="">xxxx.xxxxxx</Username>

 <password xmlns="">xxxxxx</password>

 </History>

 </s12Env:Body>

</s12Env:Envelope>

09:49:12,075 INFO [ca.worldwest.mobius.svn.subversion-logger.ForwardServlet]

 (default task-2) Processing subversion-logger request from 127.0.0.1 for /svn/

ws/service

09:49:12,075 INFO [ca.worldwest.mobius.svn.subversion-logger.ForwardServlet]

 (default task-2) Forwarding to https://worldwest.ca/esb/svn/ws/service

8.9.6. Protecting Sensitive Information
Configure xformRequest and xformResponse to use a modified identity
transformation to match against sensitive message element and attribute names,
replacing their attribute and text content with obfuscated data.
Avato provides a logging library from which you may compose custom log filters.
The following example is taken from a banking interface

<xsl:stylesheet

 exclude-result-prefixes="#all" version="2.0"

 xmlns:xd="http://www.oxygenxml.com/ns/doc/xsl"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:import

 href="/xsl/logging/common.xsl" />

161

Core Avato Component Configuration • Logger

 <xd:doc><xd:desc><xd:p>

 The “block” variable contains a sequence of UPPERCASE element names containing

 data that is to be shown blocked in the log at all times.

 </xd:p></xd:desc></xd:doc>

 <xsl:variable as="xs:string*"

 name="block"

 select="'DATEOFBIRTH',

 'PASSWORD',

 'SIN',

 'SPOUSESIN'" />

 <xd:doc><xd:desc><xd:p>

 The “obscure” variable contains a sequence of UPPERCASE element names

 containing data that is to be shown obscured in the log at all times.

 </xd:p></xd:desc></xd:doc>

 <xsl:variable as="xs:string*"

 name="obscure"

 select="'BUSINESSCUSTOMERNUMBER',

 'CUSTOMERNUMBER',

 'MPMNO',

 'MPMNUMBER'" />

 <xd:doc><xd:desc><xd:p>

 The “show” variable contains a sequence of UPPERCASE element names containing

 data that is to be shown verbatim in the log at all times.

 </xd:p></xd:desc></xd:doc>

 <xsl:variable as="xs:string*"

 name="show"

 select="'TOKEN',

 'GUID',

 'COLUMNNAME',

 'OPERAND',

 'USERNAME'" />

</xsl:stylesheet>

Import the log masking library.

The “block” variable lists all elements that will their content replaced with
X and 0 characters for letters and digits, when the log recording mode is
configured for privacy mode.

The “obscure” variable lists all elements that will have their content
obscured — which is to say, blocked except for the last four characters
— when the log recording mode is configured for privacy mode. In this
application, “obscure” mode was used to reveal just enough information

162

Core Avato Component Configuration • Logger

to confirm that the correct information was being returned, without
compromising customer privacy.

The “show” variable lists all elements that will be shown verbatim in the
log at all times, regardless the log recording mode.

8.9.7. Logging a Subset of Message Content
Configure xformRequest and xformResponse to extract a subset of the
message content, emitting it as XML, plain text, or other format.

8.9.8. User Interface Notes
The server log file may be viewed on the Navigation Menu → System → Logs
page. Unlike the console view, the web interface view is not colourized and is not
updated in real time. See Viewing the Server Log File for details.

Logging data may be affected by transformations: in particular, privacy
protection may be applied to obfuscate passwords, names, and other
information. This protection is entirely dependent on configuration details: it is
not automatic. See Protecting Sensitive Information for details.

Avato can import server log files, extracting logged messages into a sequence
with their original (logged) timing characteristics. See Load Log File for details.

When adding a message to a sequence by hand, a logger name is requested.
The name of the logger will be displayed in the sequence’s message list. It is
useful to use the same Name and Logger values, so that you can identify the
message in both the sequence message list and when viewing the message. See
Creating a New Message in a Sequence for details.

When viewing a captured message exchange, the Logged column indicates the
time the message was received, the Logger column lists the component that
logged the message, Request and Response provide the name of the message’s
root element, and ms lists the time it took to process and respond to the request.
See Viewing Message Details for details.

The search command can be used to locate log entries from specific interfaces or
components. See Search Examples for details.

When debugging a circuit, seeing the messages that have passed through
a Logger is essential to understanding what is happening. Avato makes it
incredibly easy to do this — select the “hamburger” menu at the top right of
any component that is based on Logger and choose Find messages. Instantly,
Avato opens the Sequencer Messages page with a full list of the messages that
were logged by that component. See Searching for a Message in a Sequence for
details.

163

David Priest
Elided…

Core Avato Component Configuration • Transformer

8.22. Transformer
The Transformer Component is used to convert XML requests and responses
that pass through it from one XML dialect into another.

The Transformer supports XSLT version 3.0, XQuery 3.1, and XPath 3.1, the
official World Wide Web Consortium (W3C) recommendations.

Like many integration Components, the Transformer is typically used in a circuit,
where each component forwards its potentially modified input to an upstream
service, then potentially modifies the response returned by the upstream service
and returns that response to its caller. A Transformer Component configured
with an upstream service address implies synchronous operation, as the
component waits for the response from the upstream service before returning,

An optional xformRequest parameter defines an XSL or XQuery transform that
is applied to the inbound request. If an upstream service has been configured,
the transformed request is sent to the upstream service, otherwise it is returned
back to the caller. If no request transform is configured, the request received
is passed on to the upstream service unmodified, or returned to the caller
unmodified if no upstream service was configured.

An optional xformResponse parameter defines an XSL or XQuery transform that
is applied to the response returned from the configured upstream service prior
to returning the response to the caller. If no upstream service is configured, this
parameter has no effect.

By configuring an xformRequest parameter but no upstream service provider,
the Transformer Component can be used to implement a simple microservice
that operates on its input and returns some transformed variation of that input.
An example of a microservice implemented using the Transformer Component
is the LUHN validation service provided with the Banking Card Microservices
package.

8.22.1. Configuration Example
In this scenario a downstream service has made a call into the OFS subsystem.
The subsystem returns a SOAP response that contains a proprietary data format
which is not understood by the downstream service, so the response message
has been forwarded to this Transformation component. The transformation
translates the proprietary data into an XML structure that can be validated, using
the “OFSResponseToXML” transformation. The transformed response is then
returned to the downstream service.

<Transformer

 name="fed-uad-ofs"

 wsdl="/wsdl/ccs-fed-uad/ccs-fed-uad.wsdl"

 xformResponse="/xsl/ofs/OFSResponseToXML.xsl" >

 <DisplayName>UAD to OFS</DisplayName>

 <Description>Transforms an OFS response to XML</Description>

234

https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xpath-3/

Core Avato Component Configuration • Transformer

 <Listening>

 <Address>/uad/fed-uad-ofs</Address>

 </Listening>

</Forwarder>

8.22.2. Type Information

8.22.2.1. Namespace
http://worldwest.local/interface/1.0

<Transformer/> belongs to the Interface namespace.

8.22.2.2. Type Definition
<Transformer/> is defined by an XSD 1.0 type named int:TransformerType.

8.22.2.3. Class
The Transformer component is implemented by the
ca.worldwest.mobius.web.servlet.Transformer class.

8.22.2.4. Inherited Components
The <Transformer/> element inherits elements and attributes from

• int:ComponentType.
• int:Forwarder.

8.22.2.5. Derived Components
The following type definitions extend int:Transformer

• int:AuthChallengeType
• int:DispatcherType
• int:ValidatorType

8.22.3. Simple Schema Model
<Transformer

 xformRequest? = server url

 parse-request? = boolean

 xformResponse? = server url

 parse-response? = boolean

 requestContextXPath? = XPathExpression

【inherited from Forwarder】

 【upstreamServiceName? = string】

 【httpMethod? = string】

 【connectTimeout? = integer】

235

Core Avato Component Configuration • Transformer

 【readTimeout? = integer】

 【eraseCookies? = boolean】

 【append-uri-tail? = boolean】

 【append-uri-params? = boolean】

 【append-root? = string】

 【ssl-ignore-host? = boolean】

 【allow-direct? = boolean】

【inherited from ComponentType】

 【name = string】

 【class? = string】

 【loginTokenXPath? = string】

 【contentType? = string】

 【faultHttpResponseCode? = string】

 【xformFault? = server url】

 【wsdl? = server url】

 【xformWSDL? = server url】

 【urlErrorOutputPath? = server url】

 【log-level? = "TRACE" | "DEBUG" | "INFO" | "WARN" | "ERROR" | "FATAL"】

 【recordingDisabled? = boolean】

 【writeToSequence? = string】

 【writeToSequenceName? = string】

 【xformRecordTitleRequest? = string】

 【xformRecordTitleResponse? = string】

 >

 <!-- Content: (Expect?)

【inherited from Forwarder】

 (【Headers?】 【Forwarding?】)

【inherited from ComponentType】

 (【DisplayName?】 【Description?】 【Listening】 【Parameters?】)

 -->

</Transformer>

<Expect>

 <!-- Content: (content-type+)

</Expect>

<content-type>

 <!-- Content: string -->

</content-type>

8.22.4. XML Model
<Transformer

 name="Component Name"

 xformRequest="/server/path/to/transformation"

236

Core Avato Component Configuration • Transformer

 parse-request="true|false"

 xformResponse="/server/path/to/tranformation"

 parse-response="true|false"

 requestContextXPath="XPath Expression"

 【inherited attributes from Forwarder】

 【inherited attributes from ComponentType】 >

 <Expect>

 <content-type>MIME Type</content-type>

 ⋮

 </Expect>

 【inherited elements from Forwarder】

 【inherited elements from ComponentType】

</Transformer>

name

The name of the component. It must be unique within the system.

xformRequest, xformResponse

A server path to a transformation script that will be used to transform the
XML message request or response, respectively. Used to transform an
input message into an output message, like converting a SOAP message
from system A into a message compatible with system B, or vice-versa

If no xformRequest or xformResponse parameter is specified, the request
or response is passed on unmodified to any endpoints configured in the
<Forwarding/> element, or to the upstream request originator.

If no <Forwarding/> elements are configured but an xformRequest is
specified, the request is transformed directly into a response using the
specified xformRequest.

parse-request, parse-response

When set to false the source document will converted to document node
containing a singleton xs:string atomic value. The initial context node
for the transformation may be matched against the document root node
(/), current node (.), or wildcard (*). In XSLT, the transformation may also
be initiated using <xsl:initial-template/>. In all cases processing will
be continued by passing the singleton xs:string node to a function, as
there is no XML content to be matched.

requestContextXPath

An XPath to a value contained in the request message that will be passed
as a parameter to the response transformation as a parameter named
requestContext. This allows the response to access state from the
request for use in its XSLT logic.

Expect, content-type

237

Core Avato Component Configuration • Transformer

Identifies MIME types to expect from the responding upstream service.

This allows the system to reject non-XML based responses prior to
sending the response to the Transformer.

8.22.5. Notable Details

8.22.5.1. Implementing a Mock Service
Create an xformRequest transformation that returns responses from the
MessageHistory or from a file or URL deployed on the application server based
on logic defined in XSLT. See Creating Mock Services for an example.

8.22.5.2. XSLT/XQuery Transformer Capabilities
The level of XSLT or XQuery support is dependent on the XSLT processor. Avato
uses the Saxon v9.8+ processor for XSLT, XQuery, and XML Schema. The edition
of Saxon that is included with your Avato deployment is dependent on your
licensing terms. The following capabilities are supported by the various Saxon
editions:

SaxonHE v9.8+
XSLT 1.0, XSLT 2.0 Basic, XSLT3.0 Basic, XQuery 1.0 Basic, XQuery 3.0
Basic, XQuery 3.1 Basic, XPath 2.0 Basic, XPath 3.0 Basic, XPath 3.1 Basic.

SaxonPE v9.8+
XSLT 1.0, XSLT 2.0 Basic, XSLT 3.0 Basic/Higher-Order Functions, XPath
2.0 Basic, XPath 3.1 Basic/Higher-Order Functions, EXSLT and EXPath
extensions, Saxon Extensions (Basic), SQL Extension.

SaxonEE v9.8+
XSLT 1.0, XSLT 2.0 Basic/Schema Aware, XSLT 3.0 Basic/Higher-Order
Functions/Schema Aware/Streaming, XPath 2.0 Basic/Schema Aware, XPath
3.0 Basic/Higher-Order Functions/Schema Aware, XPath 3.1 Basic/Higher-
Order Functions/Schema Aware, XML Schema 1.0 Validation, XML Schema
1.1 Validation, EXSLT and EXPath extensions, Saxon Extensions (Basic/
Advanced), SQL Extension, Compiled Code Generation, Large Document
Projection, Stylesheet Package Export, Multithreading.

Refer to Saxonica for more details regarding their XSLT processing products.

238

http://www.saxonica.com/products/products.xml

Core Avato Component Configuration • Validator

8.23. Validator
The Validator component performs schema (DTD and XSD 1.0) validation of XML
files.
Because the SOAP schemas allow any XML content within the <SOAP:Header/
> and <SOAP:Body/> elements, the Avato validator will extract the header
and body content and validate them separately, so as to provide full validation
coverage of the message. Schemas are identified by their namespaces,
alleviating the need to use xsi:schemaLocation in messages.
See Avato: Catalogs and OASIS XML Catalogs Standard for details about XML
Catalogs.

8.23.1. Configuration Example

8.23.2. Type Information
8.23.2.1. Namespace
http://worldwest.local/interface/1.0

<Validator/> belongs to the Interface namespace.

8.23.2.2. Type Definition
<Validator/> is defined by an XSD 1.0 type named int:ValidatorType.

8.23.2.3. Class
The Validator component is implemented by the
ca.worldwest.mobius.web.servlet.Validator class.

8.23.2.4. Inherited Components
The <Validator/> element inherits elements and attributes from

• int:ComponentType.
• int:Forwarder.
• int:Transformer.

8.23.2.5. Derived Components
No component type definitions extend int:ValidatorType.

8.23.3. Simple Schema Model
<Validator

 catalog? = server url

【inherited from Transformer】

 【xformRequest? = server url】

239

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Core Avato Component Configuration • Validator

 【parse-request? = boolean】

 【xformResponse? = server url】

 【parse-response? = boolean】

 【requestContextXPath? = XPathExpression】

【inherited from Forwarder】

 【upstreamServiceName? = string】

 【httpMethod? = string】

 【connectTimeout? = integer】

 【readTimeout? = integer】

 【eraseCookies? = boolean】

 【append-uri-tail? = boolean】

 【append-uri-params? = boolean】

 【append-root? = string】

 【ssl-ignore-host? = boolean】

 【allow-direct? = boolean】

【inherited from ComponentType】

 【name = string】

 【class? = string】

 【loginTokenXPath? = string】

 【contentType? = string】

 【faultHttpResponseCode? = string】

 【xformFault? = server url】

 【wsdl? = server url】

 【xformWSDL? = server url】

 【urlErrorOutputPath? = server url】

 【log-level? = "TRACE" | "DEBUG" | "INFO" | "WARN" | "ERROR" | "FATAL"】

 【recordingDisabled? = boolean】

 【writeToSequence? = string】

 【writeToSequenceName? = string】

 【xformRecordTitleRequest? = string】

 【xformRecordTitleResponse? = string】

 >

 <!-- Content: ()

【inherited from Transformer】

 (【Expect?】)

【inherited from Forwarder】

 (【Headers?】 【Forwarding?】)

【inherited from ComponentType】

 (【DisplayName?】 【Description?】 【Listening】 【Parameters?】)

 -->

</Validator>

8.23.4. XML Model
<Validator

240

Core Avato Component Configuration • Validator

 name="Component Name"

 catalog = '/server/path/to/catalog|/xsd-next-catalog`

 【inherited attributes from Transformer】

 【inherited attributes from Forwarder】

 【inherited attributes from ComponentType】 >

 【inherited elements from Transformer】

 【inherited elements from Forwarder】

 【inherited elements from ComponentType】

</Validator>

name

The name of the component. It must be unique within the system.

catalog

A server path to an XML Catalog that can cross-reference URLs to
schemas. The default path points to the current catalog. See Avato:
Catalogs and OASIS XML Catalogs Standard for further information.

241

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Part IV. Advanced Development Topics

242

9 Writing SOAP Service Tests

In addition to providing XML validation through schemas, Avato supports the
creation of arbitrarily complex tests of business rules, useful for validating the
data returned by SOAP services. These tests can include complex test set-up
involving calls to other services to obtain data for the true test, can use test data
in calculating whether response data is correct, and can selectively ignore errors
that are inconsequential to fulfilling the rules.

In addition to reading this rough guide to tests, look at the WSDL Template
Service tests in the Avato packages directory: they have code documentation,
more detail than provided in the code samples in this section, and are functioning
to-spec.

9.1. Test Flow Overview
Note

Example source code in this overview section has been simplified for
clarity, removing some required attributes and elements that are not
important for understanding how tests are run. Later sections provide
full coverage of the code.

Test Scenarios
Tests are guided by a collection of Test Scenarios. Among other things, each test
scenario identifies the test entry template and a collection of values to be used
by the template.

Simplified Test Scenario and Test Values

<Scenario template="s11.GetOperationTemplate">

 <title>Get a GetListOfOperations Template</title>

 <datasource idref="getOperationTemplate" />

</Scenario>

<DataSource xml:id="getOperationTemplate">

 <parameter name="operationName" value="GetListOfOperations" />

 <parameter name="portName" value="WSDLPort11" />

 <parameter name="serviceName" value="WSDLService" />

 <parameter name="serviceNamespace" value="http://worldwest.local/wsdl/

service" />

</DataSource>

A name that matches the test entry template.

243

Writing SOAP Service Tests • Test Flow Overview

Identifies the collection of values (a data source node) that will be used by
the test.

The test’s data source node.

Test Runner
The test runner loops through test scenarios, generating an element on-the-fly
using the scenario’s template value; this element will be matched by the template
providing the entry point for the test.
Test Runner

<xsl:for-each select="$testcases/Tests/TestCases/TestCase/Scenario">

 <xsl:variable name="dsid" select="datasource/@idref" />

 <xsl:variable name="elem">

 <xsl:element name="{@template}" namespace="http://worldwest.local/test" />

 </xsl:variable>

 <xsl:apply-templates select="$elem">

 <xsl:with-param name="token" select="$token" tunnel="yes" />

 <xsl:with-param name="esbnode" select="$esbnode" tunnel="yes" />

 <xsl:with-param name="test.scenario" select="current()" tunnel="yes" />

 <xsl:with-param name="data.matrix" select="$testcases//DataSource[@xml:id =

 $dsid]" tunnel="yes" />

 </xsl:apply-templates>

</xsl:for-each>

Creates a node using the template name identified in the Scenario.

$elem will be matched by the test entry template.

The test scenario itself.

The test’s data source node.

Test Entry Template
The matching test entry template emits a request that will generate a response
that will be tested.
Test Entry Template, Emitting a Request

<xsl:template match="t:s11.GetOperationTemplate">

 <xsl:param name="token" required="no" tunnel="yes" />

 <xsl:param name="esbnode" required="no" tunnel="yes" />

 <xsl:param name="test.scenario" required="no" tunnel="yes" />

 <xsl:param name="data.matrix" required="no" tunnel="yes" />

 <xsl:variable name="test.name"

 select="concat('s11.GetOperationTemplate.', $test.scenario/xml:id)" />

 <esb:Services>

 <esb:XmlRequest name="$test.name" uri="{concat($esbnode,'/wsdl')}">

 <xsl:call-template name="Soap11Wrapper">

244

Writing SOAP Service Tests • Test Flow Overview

 <xsl:with-param name="header">

 <auth:Token id="$token" />

 </xsl:with-param>

 <xsl:with-param name="body">

 <ws:GetOperationTemplate

 operationName="{f:parameter('operationName', $test.scenario,

 $data.matrix)}"

 portName="{f:parameter('portName', $test.scenario, $data.matrix)}"

 serviceName="{f:parameter('serviceName', $test.scenario,

 $data.matrix)}"

 serviceNamespace="{f:parameter('serviceNamespace', $test.scenario,

 $data.matrix)}"

 />

 </xsl:with-param>

 </xsl:call-template>

 </esb:XmlRequest>

 </esb:Services>

</xsl:template>

The template matches the element that was created on-the-fly by the test
runner using the name provided by the test scenario.

The test ID must be appended to the test name so that the request and
response are uniquely associated with the test. Please see important notes
about test naming in the section called “Staged Testing Templates”.

The service that is being tested.

f:parameter extracts a value from the test’s data source node.

Handling Responses
Many tests will be relatively simple, with a single request generating a single,
testable response.
Other tests will require some amount of test set-up. In such a cases, the test
entry response issues its own request: either a request fetching more data for
the test request; or the ultimate test request itself.
In all cases, Dispatcher sends responses back into the transformation, wrapping
it with an element identified by the <esb:XmlRequest /> name attribute.
These responses must be matched. We suggest using <xsl:mode on-no-
match="fail" /> to ensure missing responses are matched. Keep in mind that
each test will generate a unique name for the response.
Here is one way to handle the response:

<xsl:template match="/*[starts-with(name(),'s11.GetOperationTemplate') and

 namespace-uri()='']" />

This example uses starts-with to ignore the test ID. Because the test.name
variable in the previous example uses a name identical to the one used for the

245

Writing SOAP Service Tests • Test Flow Overview

test entry match, we test for an empty namespace-uri; otherwise this template
would match both the element that is intended to match the test entry template
as well as the response.

Alternatively, one could use a test.name that doesn’t have the same start-
with string: test.s11.GetOperationTemplate would alleviate the need to use
namespace-uri to distinguish the two template matches.

Testing Responses
When all test set-up requests and test requests have been sent a
<DispatchResult /> document is sent into the transformation. This document
is captured by the test support framework, which will extract the final
response for each test request/response sequence and send it back into the
transformation using mode='test'. Note that the response is not wrapped in an
esb:XmlRequest name.

Assuming the GetOperationTemplate request above asked for the template for
the “GetListOfOperations” service, the following template tests that the response
is correct:

Testing the Response

<xsl:template match="/s11Env:Envelope[*:Body/*:GetListOfOperations]"

 mode="test">

 <xsl:variable name="expected">

 <s11Env:Envelope xmlns:ws="http://worldwest.local/wsdl/schemas">

 <s11Env:Header />

 <s11Env:Body>

 <ws:GetListOfOperations renderAs="soap|html|xml" wsdlURI="http://

example.com" />

 </s11Env:Body>

 </s11Env:Envelope>

 </xsl:variable>

 <xsl:variable name="test" select="t:CompareDocuments($expected,self::*)" />

 <xsl:variable name="errors">

 <xsl:sequence select="f:simple.elements($test)/*[not(self::*:Header)]" />

 <xsl:sequence select="f:simple.attributes($test)/*" />

 <xsl:sequence select="f:simple.content($test)/*" />

 </xsl:variable>

 <xsl:sequence select="t:TestResults($errors, $test)" />

</xsl:template>

A match on the response that is to be tested. A predicate test is used,
preserving the SOAP envelope as the context.

246

Writing SOAP Service Tests • Test Flow Overview

The expected response, against which the received response will be
tested.

Performs the comparison, returning a complex test results document.

f:simple.elements extracts errors where element names did not match
or were out of sequence; we exclude the SOAP Header from those results.

f:simple.attributes extracts errors where attribute names did not
match.

f:simple.content extracts errors where element or attribute content did
not match.

Emits a test results document.

During the test phase, all the scenario’s requests and responses are available
for use in tests, enabling you to use knowledge of the request data to identify
correct response data; for instance, a customer name used in a request might be
used to check that the same customer name is being returned in the response.
Displaying Results
Avato UI receives the test results document and displays the test results and the
requests and responses generated in running the test.

Test Scenario Design
Tests comprise a series of Test Cases each with one or more Scenarios. Each test
case corresponds to a particular service request, and each scenario presents a
different set of parameters against which to test the service. Parameters can be
shared between tests and within a scenario the default parameter values may be
overridden. Tests can be flagged as “expected to fail”, enabling you to test both
positive and negative outcomes. Finally, an alternative expected result can be
provided, making it somewhat easier to confirm that fault responses are correct.

Note that the test scenarios file can be validated using the TestData.xsd
schema.
Structure of a Test Scenarios File

<Tests

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="TestData.xsd">

 <TestCases

 uri="/test/wsdl"

 xml:id="wsdl-tests"

 >

 <title>WSDL Service Test Suite</title>

 <TestCase xml:id="TC-001">

 <title>Get a List of Operations</title>

247

Writing SOAP Service Tests • Test Flow Overview

 <description>Gets a list of operations available through the service.</

description>

 <Scenario

 template="s11.GetListOfOperations"

 xml:id="TC-001.01"

 >

 <title>Get a List of Operations — SOAP11</title>

 <description>Gets a list of operations available through the service.</

description>

 </Scenario>

 <Scenario template="s12.GetListOfOperations" xml:id="TC-001.02">

 <title>Get a List of Operations — SOAP12</title>

 <description>Gets a list of operations available through the service.</

description>

 </Scenario>

 </TestCase>

 <TestCase xml:id="TC-002">

 <title>Get a GetListOfOperations Template</title>

 <description>Gets a request template for the GetListOfOperations

 request.</description>

 <Scenario template="s11.GetOperationTemplate" xml:id="TC-002.01">

 <title>Get a GetListOfOperations Template — SOAP11</title>

 <description>Gets a request template for the GetListOfOperations

 request.</description>

 <datasource idref="getListTemplate" />

 </Scenario>

 <Scenario template="s12.GetOperationTemplate" xml:id="TC-002.02">

 <title>Get a GetListOfOperations Template — SOAP12</title>

 <description>Gets a request template for the GetListOfOperations

 request.</description>

 <datasource idref="getListTemplate" />

 </Scenario>

 </TestCase>

 <TestCase xml:id="TC-003">

 <title>Get a GetOperationTemplate Template</title>

 <description>Gets a request template for the GetOperationTemplate

 request.</description>

 <Scenario template="s11.GetOperationTemplate" xml:id="TC-003.01">

 <title>Get a GetOperationTemplate template — SOAP11</title>

248

Writing SOAP Service Tests • Test Flow Overview

 <description>Gets a request template for the GetOperationTemplate

 request.</description>

 <datasource idref="getOperationTemplate" />

 </Scenario>

 <Scenario template="s12.GetOperationTemplate" xml:id="TC-003.02">

 <title>Get a GetOperationTemplate template — SOAP12</title>

 <description>Gets a request template for the GetOperationTemplate

 request.</description>

 <datasource idref="getOperationTemplate" />

 </Scenario>

 </TestCase>

 <TestCase xml:id="TC-004">

 <title>Bad GetOperationTemplate Requests</title>

 <description>Get a request template for an operation that does not exist</

description>

 <Scenario template="s11.GetOperationTemplate" xml:id="TC-004.01">

 <title>Get a BogusOperation template - SOAP11</title>

 <description>Override the default template, substituting the name of a

 template that does not exist.</description>

 <datasource idref="getOperationTemplate" />

 <negative>true</negative>

 <override name="operationName" value="BogusOperation" />

 <expected>

 <s11Env:Envelope xmlns:s11Env="http://schemas.xmlsoap.org/soap/

envelope/">

 <s11Env:Header />

 <s11Env:Body>

 <s11Env:Fault>

 <s11Env:Code>

 <s11Env:Value>env:Sender</s11Env:Value>

 </s11Env:Code>

 <s11Env:Reason>

 <s11Env:Text xml:lang="en">Exception</s11Env:Text>

 </s11Env:Reason>

 <s11Env:Detail>

 <errorcode>SYS012</errorcode>

 <message>An empty sequence is not allowed as the result of

 call to f:getOperationByNameFromBinding; SystemID: https://localhost:8443/esb/

services/wsdl/api/wsdlAPI-utility.xslt; Line#: 289; Column#: 34</message>

 </s11Env:Detail>

 </s11Env:Fault>

 </s11Env:Body>

 </s11Env:Envelope>

 </expected>

249

Writing SOAP Service Tests • Test Flow Overview

 </Scenario>

 </TestCase>

 </TestCases>

 <TestData>

 <DataSource xml:id="getListTemplate">

 <title>getListTemplate</title>

 <parameter name="operationName" value="GetListOfOperations" />

 </DataSource>

 <DataSource xml:id="getOperationTemplate">

 <title>getOperationTemplate</title>

 <parameter name="operationName" value="GetOperationTemplate" />

 </DataSource>

 </TestData>

</Tests>

The test suite entry endpoint, defined in the test suite web fragment.

An identifier for this test suite, unique among all test suites.

The local-name() of the test entry template, used to create an element
that will be matched by the template.

An unique identifier for this particular test.

A cross-reference to a <DataSource /> element providing parameters for
the test.

A flag to indicate that the test is expected to fail (and thus passes the test.)

A parameter that overrides the value provided in the <DataSource />
element in ➎.

The expected response to this test, overriding the response hardcoded in
the test.

An element providing parameters for a test.

It is possible to “flag” some overrides for special purposes; for instance,
overriding a parameter and using a value of today will generate today’s date
in MM-DD-YYYY format. This functionality can be customized; see the section
called “Test Template Design” below.

Test Template Design
The following template can be used almost verbatim, requiring customization of
only the test inclusions and the test data URI.

<xsl:stylesheet

 xmlns:esb="http://worldwest.local/esb"

250

Writing SOAP Service Tests • Test Flow Overview

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0" >

 <!-- include the test framework -->

 <xsl:import

 href="/msg/sys/TestFramework/xsl/TestRunner.xsl" />

 <!-- bring in the WSDL tests -->

 <xsl:include href="/msg/sys/TestSuites/WSDL-Tests/xsl/services/

s11.GetListOfOperations.xsl" />

 <xsl:include href="/msg/sys/TestSuites/WSDL-Tests/xsl/services/

s11.GetOperationTemplate.xsl" />

 <xsl:include href="/msg/sys/TestSuites/WSDL-Tests/xsl/services/

s12.GetListOfOperations.xsl" />

 <xsl:include href="/msg/sys/TestSuites/WSDL-Tests/xsl/services/

s12.GetOperationTemplate.xsl" />

 <xsl:param

 name="testcases.uri"

 select="'/msg/sys/TestSuites/TestData/wsdl.TestData.xml'" />

</xsl:stylesheet>

Importing the TestRunner allows you to override the framework’s
templates and functions.

Include all the tests.

This value will be passed by parameter in the future.

Everything else is provided by the test framework.

The f:parameter function in the TestRunner.xsl file provides “flags” that can
be used in the TestData overrides to provide calculated data values. Copy the
function into your test template and modify to your satisfaction.

9.2. Demonstration: WSDL
GetOperationTemplate Test

9.2.1. Test Entry Template
Every test enters on a template identified by the test scenario @template
attribute. This template must belong to the http://worldwest.local/
test namespace to prevent accidental name collisions. It will always take four
parameters as shown in the listing below.

251

http://worldwest.local/test
http://worldwest.local/test

Writing SOAP Service Tests • Demonstration: WSDL GetOperationTemplate Test

Tests use the Dispatcher service to emit service calls and process the responses.
In a simple test there will be two templates: one to emit the test request using
values from its test scenario, and another to process the response.

Complex tests may require collection of data to set up the test, emitting several
requests to other services, and using the responses as a source of values to be
used in the test. Ultimately, a test request will be emitted and a final template
will match and process its response.

In the source code example below, the test requires some set-up before it can be
executed: before a GetOperationTemplate call can be made, the port, service,
and service name for the operation must be obtained. To get this information, a
call to GetListOfOperations is made; the response will be captured by name
and used in the creation of the test request.

Testing: Test Entry Template

<!--

 SOAP11 STEP ONE

 Get List of WSDL Template Service Operations

 The eventual call to GetOperationTemplate will require the serviceName,

 serviceNamespace, and portName; this call will get that data.

 The operation name is supplied by the test data

 token: The authorization token for the test suite. Required.

 esbnode: The server on which to run the tests. Required.

 test.scenario: The test scenario, from the test's TestData.xml document.

 Required.

 data.matrix: The data for the test scenario, from the test's TestData.xlm

 document.

-->

<xsl:template match="t:s11.GetOperationTemplate">

 <xsl:param name="token" required="yes" tunnel="yes" />

 <xsl:param name="esbnode" required="yes" tunnel="yes" />

 <xsl:param name="test.scenario" required="yes" tunnel="yes" />

 <xsl:param name="data.matrix" required="no" tunnel="yes" />

 <!-- for the sake of human readability,

 prepend the name of the service to the test id -->

 <xsl:variable

 name="test.name"

 select="concat('test.stage.1.s11.GetOperationTemplate.', $test.scenario/

@xml:id)" />

 <esb:XmlRequest

 name="{$test.name}"

 uri="{concat($esbnode,'/wsdl')}">

 <xsl:call-template name="Soap11Wrapper">

 <xsl:with-param name="header">

 <auth:Token id="{$token}" />

 <t:test

252

Writing SOAP Service Tests • Demonstration: WSDL GetOperationTemplate Test

 esbnode="{$esbnode}"

 name="{$test.name}"

 id="{$test.scenario/@xml:id}"

 operationName="{f:parameter('operationName', $test.scenario,

 $data.matrix)}" />

 </xsl:with-param>

 <xsl:with-param name="body">

 <ws:GetListOfOperations

 renderAs="html"

 wsdlURI="{concat($esbnode,'/wsdl?wsdl')}" />

 </xsl:with-param>

 </xsl:call-template>

 </esb:XmlRequest>

</xsl:template>

The test entry template must use the http://worldwest.local/test
namespace and its local-name must match the value provided in the
template attribute of its corresponding scenario.

The template must include these four parameters as written.

<esb:XmlRequest /> elements must be named using their test scenario
xml:id attribute. When writing a test set-up request, the name must
include the prefix test.stage or test-stage so that the set-up
responses can be excluded from test analysis.

The set-up request is going to be sent to the same server node that is
being tested. This treads closely to testing the server node; if this request
failed, the overall test would unexpectedly fail. A better test design might
specify a known-good server node in the scenario parameters.

In complex tests it is convenient to pass parameters by including them in
the request header. These can be extracted later by requesting the request
document.

This makes a service call to fetch information we need in order to set up
the test. The response will be matched on its <esb:XmlRequest /> name.

Staged Testing Templates
The previous source code listing provided a name for the <XmlRequest />
that fetches additional data for the test itself. This name is matched by the next
template in the test set-up sequence, which may issue additional data-gathering
requests, or may emit the ultimate test request.

Important

When writing a test set-up request, the name must include the prefix
test.stage or test-stage so that the set-up responses can be
excluded from test analysis.

253

Writing SOAP Service Tests • Demonstration: WSDL GetOperationTemplate Test

In this example, it emits the test request using values from both the test entry
request and the subsequent set-up request.

Complex Testing: Template Stages

<!--

 SOAP 11 STEP TWO

 Request a Specific Template from the WSDL Template Service.

 Step one provided values for several parameters; others are provided by the

 scenario.

-->

<xsl:template

 match="/*[starts-with(name(), 'test.stage.1.s11.GetOperationTemplate')]">

 <xsl:variable

 name="request.doc"

 select="document(concat('/Requests/', name(.)))" />

 <xsl:variable

 name="test.name"

 select="concat('s11.GetOperationTemplate.', $request.doc//t:test/@id)" />

 <xsl:variable

 name="esbnode"

 select="$request.doc//t:test/@esbnode" />

 <esb:XmlRequest

 faultaction="ignore"

 name="{$test.name}"

 uri="{concat($esbnode,'/wsdl')}" >

 <xsl:call-template name="Soap11Wrapper">

 <xsl:with-param name="header">

 <auth:Token id="{$request.doc//auth:Token/@id}" />

 </xsl:with-param>

 <xsl:with-param name="body">

 <ws:GetOperationTemplate

 operationName="{$request.doc//t:test/@operationName}"

 portName="{//ws:service/ws:port[ws:type='soap11']/ws:name}"

 serviceName="{//ws:service/ws:name/text()}"

 serviceNamespace="{//ws:service/ws:namespace}"

 wsdlURI="{concat($esbnode,'/wsdl?wsdl')}"

 />

 </xsl:with-param>

 </xsl:call-template>

 </esb:XmlRequest>

</xsl:template>

This predicate excludes the scenario xml:id component of the name,
allowing every scenario to be matched.

254

Writing SOAP Service Tests • Demonstration: WSDL GetOperationTemplate Test

This fetches the test entry request document for a specific scenario. The
name of the document includes the scenario xml:id component.

The response to this request will be one that we want to test, so it does
not get the test.stage prefix. We have to jump through some hoops to
get the required test ID. It has been stashed in the test entry request SOAP
Header.

Similarly, we recall the server node on which the test is to be run.

And the operation name was also stashed in the t:test header.
Other parameters are obtained from the current context, the
GetListOfOperations response document.

Don’t forget to handle the response that will be generated by this request!

Complex Testing: Discard the Final Response

<!--

 SOAP 11 STEP THREE

 Dispatcher sends the (named) response back in: simply discard it.

 The DispatchResult handler will eventually handle everything in "test" mode.

-->

<xsl:template

 match="/*[starts-with(name(),'s11.GetOperationTemplate')

 and namespace-uri()='']" />

This completes the set-up of the test request, and the handling of all the
responses that it generates. Next, the test framework will send the final
responses back into the transformation using mode='test'.

Test Response Analysis
Recall that a <DispatchResult /> document is sent into the transformation
as the last step of a dispatched service. Thus, the last step in a test is to
write a template that uses a predicate to match the expected response, using
mode="test" to ensure that it does not capture responses that were generated
during a test set-up stage.

Analysis of the response returned by a test request comprises four parts:

• The expected response, which may include data values determined by
calculation or extracted by XPath from test requests and responses; and
which may include t:position attributes that allow some amount of
flexibility in determining if a response is valid.

• A call to the received vs. expected response comparison utility.

• Simplification of the test analysis result.

255

Writing SOAP Service Tests • Demonstration: WSDL GetOperationTemplate Test

• Creation of a <TestResults /> document.

Most test suites will test any given service operation using a variety of test
parameters. The responses to these tests will often be similar, allowing a single
programmatically-defined expected response to provide coverage for most
scenarios. When necessary, a static expected response can be provided in the
test scenario; these are especially useful when a test is designed to fail with a
fault.

Test Response Analysis

<!--

 SOAP 11 STEP FOUR

 Test the response of a GetOperationTemplate request.

 Compares the received response to an expected result.

 A template for GetListOfOperations was requested.

 Ignores:

 Header elements.

 Return:

 A TestResults element.

-->

<xsl:template

 match="/s11Env:Envelope[*:Body/*:GetListOfOperations]"

 mode="test" >

 <xsl:param name="expected">

 <s11Env:Envelope>

 <s11Env:Header />

 <s11Env:Body>

 <tns:GetListOfOperations

 renderAs="soap|html|xml"

 wsdlURI="http://example.com"

 xmlns:tns="http://worldwest.local/wsdl/schemas" />

 </s11Env:Body>

 </s11Env:Envelope>

 </xsl:param>

 <xsl:variable name="test" select="t:CompareDocuments($expected,self::*)" />

 <xsl:variable name="errors">

 <xsl:sequence select="f:simple.elements($test)/*[not(self::*:Header)]" />

 <xsl:sequence select="f:simple.attributes($test)/*" />

 <!--<xsl:sequence select="f:simple.content($test)/*" />-->

 </xsl:variable>

 <xsl:sequence select="t:TestResults($errors, $test)" />

256

Writing SOAP Service Tests • Demonstration: WSDL GetOperationTemplate Test

</xsl:template>

The predicate test ensures that the template context remains at the root
element level; the use of mode="test" prevents this match from capturing
responses generated by set-up stages.

The expected response does not have to be complete; here, we have
eliminated Header descendents; attributes and content may also be
selectively discarded.

The CompareDocuments function returns a complex result document,
which we subsequently filter.

Use f:simple.* to extract elements that are in error. Errors that we
do not care about can be excluded by applying a predicate test, as seen
here to exclude the Header errors (a result of not providing a complete
<s11Env:Header /> expectation). Content errors are excluded here by
commenting-out their extraction.

Finally, we call TestResults to emit the final test document, to be
processed by Avato to generate its web UI.

Writing Test Expectations
The heart of a test is performed in comparing the received response with an
expected response.

Validation of a response against schemas will confirm that the XML structure is
correct, and that data contained within are of the correct type and meet certain
value specifications, but can not always determine whether the data itself is
correct.

Because we are writing our tests in XSL and running them using the Avato
Dispatcher, we have full access to all test set-up requests and responses, and
can calculate values dynamically, enabling testing of business rules. Two simple
examples follow:

Example Programmatically Defined Test Value

<xsl:variable

 name="request"

 select="doc(concat('Requests/',//*:Message/@document))" />

<!-- Test that the sequence number was incremented -->

<SequenceNumber>

 <xsl:value-of

 select="xs:integer($request//t:test/@seqnum)+1" />

</SequenceNumber>

<!-- Test that the operation succeeded or failed as expected -->

<OperationSuccessful>

257

Writing SOAP Service Tests • Demonstration: WSDL GetOperationTemplate Test

 <xsl:value-of

 select="if ($request//t:test/@isvalid = 'true') then 1 else 0" />

</OperationSuccessful>

Avato adds some information to response SOAP Headers, including an
identifier for the originating request. We can then retrieve values that were
passed along in the header, allowing us to dynamically calculate response
values.

Element Position Hints
A t:position attribute can be added to an expected response element to
provide hints about where an element should appear, allowing a certain amount
of flexibility in dealing with elements that may be repeated or omitted.

• first: the element must be the first child of its parent.

• last: the element must be the last child of its parent.

• any: the element may appear in any position among the children of its
parent; it may be repeated.

• omit: omit the element and its children from the test (the element is still
needed to keep the structural pattern synchronized between the received
and expected response.)

• integer value: the element must appear as the nth child of its parent.

Example Positional Test

<!-- A repeating element -->

<MemberAccounts>

 <Account

 t:position="any" />

</MemberAccounts>

<!-- New data elements will be first in the list and its sequence number will

 match that of the request that generated the new element -->

<Transactions>

 <Transaction

 seqnum="{xs:integer($request//t:test/@seqnum)}"

 t:position="first" />

 <Transaction

 t:position="any" />

</Transactions>

Writing Error Filters
The comparison utility returns a complex document detailing the nature of every
failure and its associated elements. Three utility functions are provided to allow

258

Writing SOAP Service Tests • Demonstration: WSDL GetOperationTemplate Test

you to filter these errors by their type, by the failed element, or by the type of
failure.

Error Categories
Utility functions are provided to enable selective selection and rejection of errors:

• f:simple.elements: returns a list of elements with failed children.

• f:simple.attributes: returns a list of elements with failed attributes.

• f:simple.content: returns a list of elements with failed content.

If you need finer-grained control of error filtering, you can inspect the Errors
report in the test results, where the raw test output is provided. You can then
write predicates that, for instance, filter out elements that are optional:

Example Error Filter

<xsl:copy-of

 select="f:simple.elements($test)/*[not(self::*:Header

 or self::*:Restrictions[t:received = 'false'])]" />

This example rejects errors where the Restrictions element does not appear
in the received response.

Final Words
The WSDL Get Operations and Get Templates test suite is included in your
packages folder. Inspect its package.xml and web-fragment.xml files to learn
more about packaging; and review its test data (wsdl.TestData.xml), test entry
(Run.xsl) and service tests (in the services subfolder) to learn more about
writing a test suite.

259

David Priest
Elided…

Part V. Appendices

267

A Build Process Details

The following information is optional reading.

The build process performs tokenization in the following order, to a range of files:

1. The version token in root/properties/version.properties is applied to
root/conf/web-interfaces.xml.

2. A set of hardcoded tokens based on the value of the -Dcontext-root build
parameter (default of esb) is applied to the environment properties file
root/properties/env-name/properties.xml.

3. The environment properties tokens and context-root tokens are applied to
root/conf/web-interfaces.xml

4. For each package, its package properties tokens, the environment properties
tokens, and context-root tokens are applied to its properties.xml
configuration file.

5. The environment properties tokens and context-root tokens are applied to
root/your-platform-name/jboss-web.xml

6. The environment properties tokens and context-root tokens are applied to
root/your-platform-name/mobius.catalog.xml

268

B XML Catalogs

B.1. Overview
XML Catalogs is a W3C Specification for entity management or, in other words,
a standard for cross-referencing an object identifier with its object, so that these
objects may be shared between information systems.

Avato makes use of two sets of XML Catalogs:

• One for resolving URIs for <include/> and <import/> elements (used in
XSLT, WSDL, and XSD) and XPath references; and

• One for resolving schemas through their DOCTYPE Public or System ID, a
schema location hint, or a targetNamespace URI.

B.2. Resolving URIs for Includes, Imports, and
XPath References
Several XML schemas permit modularization of source files through the use
of <include/> or <import/> elements. These typically take a form similar to
<include href="/path/to/file" />. Some XPath functions also refer to
files, including the commonly-used doc() function.

There are three common paths to files on an Avato instance:

• /path/to/file — used to locate resources stored in the Avato file system,
rooted on the root/web/ directory, using absolute referencing.

• path/to/file — used to locate resources stored in the Avato file system,
from within the root/web/ directory, but using relative referencing. Note
the lack of a leading slash ("/").

• /msg/sys/path/to/file — used to locate resources stored by the Avato
database servlet.

Note that when modularizing packages that web resources are copied to the
server root/web/ directory. Packages must not use folders that duplicate
system servlet paths like /msg/ or /ui/.

269

https://www.oasis-open.org/committees/entity/spec.html

XML Catalogs • Resolving URIs for Includes, Imports, and XPath References

A package that uses relative references to files within its directory (href="path/
to/file") will continue have those resources resolved correctly.

A package may also use absolute references to files within the server web
directory (href="/path/to/file"); these resources will be resolve to
root/web/path/to/file, allowing you to access core functions like xsl/
SoapWrappers.xsl.

A package can also use references to files within the server database (href="/
msg/sys/path/to/file").

B.2.1. Configuration of Avato URI Resolution
Resolution of such URIs is handled by a catalog and Avato component identified
in the root/src/CatalogManager.properties configuration file:

CatalogManager.properties

catalogs=mobius.catalog.xml

relative-catalogs=no

static-catalog=no

catalog-class-name=org.apache.xml.esbresolver.ESBResolver

verbosity=99

prefer=public

As indicated by the catalogs setting on the first line of the configuration
file, the root catalog file is named mobius.catalog.xml. Prior to building the
application this file is located at root/conf/wildfly12/mobius.catalog.xml.
After the application is built it resides in Avato.war in the WEB-INF subdirectory
as a sibling to the CatalogManager.properties file.

mobius.catalog.xml before building Avato

<catalog

 xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

 <rewriteURI

 rewritePrefix="@esb.address.insecure@"

 uriStartString="http://worldwest.local" />

</catalog>

Note that this pre-build catalog makes use of a properties token:
@esb.address.insecure@. This value is configured in a root/
properties/env-name/properties.xml file. At build time, the @-delimited
token is replaced by an appropriate value, such as http://www.myserver.com/
esb. See the Properties Configuration section of the Avato Developers Guide for
token replacement details.

mobius.catalog.xml after building Avato

<catalog

270

XML Catalogs • Resolving URIs for Includes, Imports, and XPath References

 xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

 <rewriteURI

 rewritePrefix="http://localhost:8080/esb"

 uriStartString="http://worldwest.local" />

</catalog>

The URI resolution catalog is very simple: it rewrites prefixes that match
the specified uriStartString with the value in rewritePrefix. In other
words, it replaces http://worldwest.local/path/to/file with http://
localhost:8080/esb/path/to/file.

B.3. Resolving Schemas
When validating an XML file, a corresponding schema must be identified. There
are several mechanisms available:

• Using a DOCTYPE instruction before the root element. This instruction
typically looks like <!DOCTYPE root-element PUBLIC "public
identifier" "system identifier" />.

• Using an schema location hint in the root element attributes. This typically
looks like <root-element xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="http://uri path/to/
schema.xsd" />. Note the space in xsi:schemaLocation separating the
schema namespace from the XSD location URI.

• When validating a WSDL or XSD, using the root element target
namespace attribute. This typically looks like <root-element
targetNamespace="uri" />.

In all cases, schemas are resolved using the Catalog servlet, which iterates
through catalogs located in the Avato database, looking for a match for the
schema URI and resolving that match to a file location.

B.3.1. Configuration of Avato Schema Resolution
The Avato Validator component calls upon the Catalog servlet to perform
schema URI resolution. As with all servlets, the Catalog component is
configured in a web.xml deployment descriptor file. It is typically located at
https://server_url/context_root/xsd-next-catalog.

The Catalog component searches the Avato filesystem and database for
catalogs, modifying them on-the-fly to link them together through the use of
the catalog <nextCatalog/> element. This enables catalog resolution to be
dynamic, changing as Avato packages are loaded or unloaded. These additional
catalogs will be accessed at https://server_url/context_root/xsd-next-
catalog?i=n where n is 1 or greater.

271

XML Catalogs • Resolving Schemas

272

C Document Conventions

The schemas and XML samples use the following conventions when describing
content:

C.1. Data Types
string, integer, boolean, anyURI, token, Name, ID

A value conformant to its type definition in W3C XML Schema.

package file path
A path to a package.xml file, starting from the root /packages directory.
This path will have a leading slash. /Social/LinkedIn/package.xml
references /path/to/mobius/packages/Social/LinkedIn/package.xml.

relative file path
A path relative to the directory containing the current package.xml file.
This path will not have a leading slash. Given a package file /path/to/
mobius/packages/Social/LinkedIn/package.xml, a reference to wsdl/
LinkedIn.xsd points to /path/to/mobius/packages/Social/LinkedIn/
wsdl/LinkedIn.xsd.

absolute file path, absolute directory path
A absolute path to a file or directory pointing to a fixed location on disk. This
path will have a leading slash. An example of an absolute path is /var/tmp/
myfile.xml.

server url
A URL for a resource on the Avato server, with the scheme, host name, port,
and Avato root path removed, e.g. http://myserver:8080/root/myApp/
index.html becomes /myApp/index.html. This path will have a leading
slash.

url
A URL for an arbitrary resource on any server, complete with scheme, host
name, and port, e.g. http://anyserver:8080/some_app/index.html or
\mailto:alertme@example.com.

XPathExpression, XSLTMatchPattern
An expression conformant to its definition in XPath 3.1 and XSLT 3.0,
respectively.

273

https://www.w3.org/TR/xproc/#xmlschema-2
https://www.w3.org/TR/xpath-3/
https://www.w3.org/TR/xslt-30/

Document Conventions • Schema Models

C.2. Schema Models
The notation of a schema model is as follows:

• Required attributes are shown with their name in bold text.
• Optional attributes are shown in plain text and are suffixed with a question

mark (?).
• Value descriptions or types are italicized and are not quoted.
• Fixed attribute values are shown as "quoted plain text".
• Alternative attribute values are separated by a vertical bar (|).
• Unless the element must be empty, a comment specifies the allowable

content.
• Elements or element groups separated by a space () may appear in any

order.
• Elements or element groups separated by a comma (,) must appear

sequentially.
• Elements or element groups separated by a vertical bar (|) are choices.
• Elements that are required (exactly one) are bold and do not have a suffix.
• Elements that are required (one or more) are bold and are suffixed with a

plus sign (+).
• Elements that are optional (zero or one) are suffixed with a question mark

(?).
• Elements that are optional (zero or more) are suffixed with an asterisk (*).
• Inherited attributes and elements are wrapped in heavy brackets (【 and 】)
• The description of text content is italicized.

<ns:example-element

 id = string

 activate? = "yes" | "no" >

 <!-- Content: ((Name Description?), Device*) -->

</Package>

This example defines an element ns:example-element. It has a mandatory
id attribute with a string value. It has an optional activate attribute that
must have a value of yes or no. The content of the element includes a required
<Name/> element and an optional <Description/> element. The optional
<Device/> element may be repeated and must be used after the other elements
(,).

274

Document Conventions • XML Models

C.3. XML Models
The notation of the XML model is similar to that of the schema model:

• Required attributes and elements are shown with their name in bold text.
• Optional attribute and element names are shown as plain text.
• Attribute value choices are shown in quoted plain text, with vertical bars (|)

separating the choices.
• Default attribute values are shown in bold text.
• Descriptions of attribute and element values are italicized.
• Alternative values are separated by a vertical bar (|).
• Elements that may be repeated are followed by a continuation character (⋮)

or (…).
• Complex element content may be called out as a “See…” separate section.
• Inherited element content may be called out in heavy brackets (【 and 】)
• Enumerated call-outs provide additional information.

<ns:example-element

 id = "uuid"

 activate = "yes|no">

 <Name>Element Name</Name>

 <Description>Element Description</Description>

 <Device>See Section C.3, “XML Models”.</Device>

 ⋮

</Package>

id

Italicized text is descriptive.

activate

Vertical bars indicate choices.

Name, Description

Bold indicates required elements; non-bolded elements are optional.

Device

The vertical continuation character indicates that the element may be
repeated.

C.4. Keycap References
Please note that Macintosh and Windows keyboards use different names for the
modifier keys:

275

Document Conventions • Keycap References

Modifier Key Name Conventions

In this Manual Macintosh Keyboard Windows Keyboard

Alt Option Alt

Cmd Cmd Ctrl

Enter Return Enter

Shift Shift Shift

276

Document Conventions • Typography

C.5. Typography
The following typographical conventions are used to help differentiate different
word meanings:

Typographic Conventions

Typographic Style Meaning

Normal text No special meaning.

Emphasis Important text.

Strong Emphasis Very important text.

Value to be typed A value to be typed into an input box
using the keyboard.

source code Source code

computer text A line of source code, computer
output, file name, or other code- or
computer-oriented data.

Key name + key name A command or shortcut key or key
combination to be typed on the
keyboard.

Control Label The name of a control on the screen.

Menu → Submenu → Command The “path” to select the specified
command or control.

Document Reference The title of a document or a heading
within a document.

Document Reference A selectable link to a document.

277

Document Conventions • User Actions

C.6. User Actions
The following conventions are used when referring to actions performed using
the mouse, touch screen, or other pointing device:

Action Conventions

Verb item on which to act Action

Select item Point the mouse cursor at the item
and then click and release the left
(primary) mouse button; or point the
trackpad cursor at the item and then
click and release the trackpad; or
touch the screen at the item and then
tap the screen.

Select/De-select item When referring to an item in a list,
turn on the highlight (select) or
turn off highlighting (deselect) by
selecting the item.

For some items you may multi-select
by pressing a modifier key (Shift or
Cmd) while selecting.

Select/De-select “content” Select the text content by click-drag-
releasing the left (primary) mouse
button, sweeping the cursor over the
desired text.

Drag item Select the item without releasing the
mouse button, then move the item to
a new position or place, releasing the
mouse button to drop the item.

Key name + Drag item

(e.g. Ctrl+Drag item)

Hold down the named key, then drag
the item.

Choose Menu → Sub-menu →
Command

Select the named menu, then choose
the sub-menu and/or command.

278

Document Conventions • Tips and Admonitions

C.7. Tips and Admonitions
The following symbols are used to identify important information:

Symbol Conventions

Tip

A hint that may make
things easier or help you
be more productive.

Caution

Information that should
not be ignored because
recoverable data loss
might occur.

Note

Supplemental information
qualifying an important
points or that applies to a
special case.

Warning

Information that must
not be ignored because
irrecoverable data loss
might occur.

Important

Information should not be
ignored but will not cause
data loss.

279

Document Conventions • Tips and Admonitions

280

999 Canada Pl Suite 404
Vancouver, BC V6C 3E2

1–604–600–7715
http://avato.co
info@avato.co

